This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include "template.hpp"
#include "modular-arithmetic/montgomery-modint.hpp"
#include "data-structure/segment-tree/lazy-segment-tree.hpp"
#include "group/monoid-action/add-count-affine.hpp"
using mint = mint998;
using Monoid = AddCountMonoid<mint>;
using Action = AddCountAffineAction<mint>;
using T = Monoid::value_type;
int main(){
cin.tie(nullptr)->sync_with_stdio(false);
int n,q;
cin >> n >> q;
vector<mint> a(n);
for(auto &x:a)cin >> x;
LazySegmentTree<Action> s(n,[&](int i){return Monoid::make(a[i]);});
while(q--){
int op;
cin >> op;
if(op){
int l,r;
cin >> l >> r;
cout << s.query(l,r-1).first << "\n";
}else{
int l,r,b,c;
cin >> l >> r >> b >> c;
s.update(l,r-1,T(b,c));
}
}
}
#line 1 "verify/yosupo/data-structure/range_affine_range_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#line 1 "template.hpp"
#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
using ll = long long;
using db = long double;
using vi = vector<int>;
using vl = vector<ll>;
using vd = vector<db>;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pdd = pair<db,db>;
const int INF=INT_MAX/2;
const int MOD=998244353;
const int MOD2=1000000007;
const ll LINF=LLONG_MAX/2;
const db DINF=numeric_limits<db>::infinity();
const db EPS=1e-9;
const db PI=acos(db(-1));
template<class T>
using ordered_set = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>;
template<class T>
using ordered_multiset = tree<T,null_type,less_equal<T>,rb_tree_tag,tree_order_statistics_node_update>;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
mt19937_64 rng64(chrono::steady_clock::now().time_since_epoch().count());
#line 2 "modular-arithmetic/montgomery-modint.hpp"
/**
* Author: Teetat T.
* Date: 2024-03-17
* Description: modular arithmetic operators using Montgomery space
*/
template<uint32_t mod,uint32_t root=0>
struct MontgomeryModInt{
using mint = MontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r(){
u32 res=1;
for(i32 i=0;i<5;i++)res*=2-mod*res;
return res;
}
static const u32 r=get_r();
static const u32 n2=-u64(mod)%mod;
static_assert(mod<(1<<30));
static_assert((mod&1)==1);
static_assert(r*mod==1);
u32 x;
constexpr MontgomeryModInt():x(0){}
constexpr MontgomeryModInt(const int64_t &v):x(reduce(u64(v%mod+mod)*n2)){}
static constexpr u32 get_mod(){return mod;}
static constexpr mint get_root(){return mint(root);}
explicit constexpr operator int64_t()const{return val();}
static constexpr u32 reduce(const u64 &v){
return (v+u64(u32(v)*u32(-r))*mod)>>32;
}
constexpr u32 val()const{
u32 res=reduce(x);
return res>=mod?res-mod:res;
}
constexpr mint inv()const{
int a=val(),b=mod,u=1,v=0,q=0;
while(b>0){
q=a/b;
a-=q*b;
u-=q*v;
swap(a,b);
swap(u,v);
}
return mint(u);
}
constexpr mint &operator+=(const mint &rhs){
if(i32(x+=rhs.x-2*mod)<0)x+=2*mod;
return *this;
}
constexpr mint &operator-=(const mint &rhs){
if(i32(x-=rhs.x)<0)x+=2*mod;
return *this;
}
constexpr mint &operator*=(const mint &rhs){
x=reduce(u64(x)*rhs.x);
return *this;
}
constexpr mint &operator/=(const mint &rhs){
return *this*=rhs.inv();
}
constexpr mint &operator++(){return *this+=mint(1);}
constexpr mint &operator--(){return *this-=mint(1);}
constexpr mint operator++(int){
mint res=*this;
return *this+=mint(1),res;
}
constexpr mint operator--(int){
mint res=*this;
return *this-=mint(1),res;
}
constexpr mint operator-()const{return mint()-mint(*this);};
constexpr mint operator+()const{return mint(*this);};
friend constexpr mint operator+(const mint &lhs,const mint &rhs){return mint(lhs)+=rhs;}
friend constexpr mint operator-(const mint &lhs,const mint &rhs){return mint(lhs)-=rhs;}
friend constexpr mint operator*(const mint &lhs,const mint &rhs){return mint(lhs)*=rhs;}
friend constexpr mint operator/(const mint &lhs,const mint &rhs){return mint(lhs)/=rhs;}
friend constexpr bool operator==(const mint &lhs,const mint &rhs){
return (lhs.x>=mod?lhs.x-mod:lhs.x)==(rhs.x>=mod?rhs.x-mod:rhs.x);
}
friend constexpr bool operator!=(const mint &lhs,const mint &rhs){
return (lhs.x>=mod?lhs.x-mod:lhs.x)!=(rhs.x>=mod?rhs.x-mod:rhs.x);
}
friend constexpr bool operator<(const mint &lhs,const mint &rhs){
return (lhs.x>=mod?lhs.x-mod:lhs.x)<(rhs.x>=mod?rhs.x-mod:rhs.x); // for std::map
}
friend istream &operator>>(istream &is,mint &o){
int64_t v;
is >> v;
o=mint(v);
return is;
}
friend ostream &operator<<(ostream &os,const mint &o){
return os << o.val();
}
};
using mint998 = MontgomeryModInt<998244353,3>;
using mint107 = MontgomeryModInt<1000000007>;
#line 2 "data-structure/segment-tree/lazy-segment-tree.hpp"
/**
* Author: Teetat T.
* Date: 2024-01-15
* Description: Segment Tree with Lazy Propagation
*/
template<class MonoidAction>
struct LazySegmentTree{
using InfoMonoid = typename MonoidAction::InfoMonoid;
using TagMonoid = typename MonoidAction::TagMonoid;
using Info = typename MonoidAction::Info;
using Tag = typename MonoidAction::Tag;
int n;
vector<Info> t;
vector<Tag> lz;
LazySegmentTree(){}
LazySegmentTree(int n,function<Info(int)> create){init(n,create);}
LazySegmentTree(int n,Info v=InfoMonoid::unit()){init(n,[&](int){return v;});}
template<class T>
LazySegmentTree(const vector<T> &a){init((int)a.size(),[&](int i){return Info(a[i]);});}
void init(int _n,function<Info(int)> create){
n=_n;
int m=4<<(31-__builtin_clz(n));
t.assign(m,InfoMonoid::unit());
lz.assign(m,TagMonoid::unit());
function<void(int,int,int)> build=[&](int l,int r,int i){
if(l==r)return void(t[i]=create(l));
int m=(l+r)/2;
build(l,m,i*2);
build(m+1,r,i*2+1);
pull(i);
};
build(0,n-1,1);
}
void pull(int i){
t[i]=InfoMonoid::op(t[i*2],t[i*2+1]);
}
void apply(int i,const Tag &v){
t[i]=MonoidAction::op(t[i],v);
lz[i]=TagMonoid::op(lz[i],v);
}
void push(int i){
apply(i*2,lz[i]);
apply(i*2+1,lz[i]);
lz[i]=TagMonoid::unit();
}
void modify(int l,int r,int i,int x,const Info &v){
if(x<l||r<x)return;
if(l==r)return void(t[i]=v);
int m=(l+r)/2;
push(i);
modify(l,m,i*2,x,v);
modify(m+1,r,i*2+1,x,v);
pull(i);
}
void modify(int x,const Info &v){
modify(0,n-1,1,x,v);
}
void update(int l,int r,int i,int x,int y,const Tag &v){
if(y<l||r<x)return;
if(x<=l&&r<=y)return apply(i,v);
int m=(l+r)/2;
push(i);
update(l,m,i*2,x,y,v);
update(m+1,r,i*2+1,x,y,v);
pull(i);
}
void update(int x,int y,const Tag &v){
update(0,n-1,1,x,y,v);
}
Info query(int l,int r,int i,int x,int y){
if(y<l||r<x)return InfoMonoid::unit();
if(x<=l&&r<=y)return t[i];
int m=(l+r)/2;
push(i);
return InfoMonoid::op(query(l,m,i*2,x,y),query(m+1,r,i*2+1,x,y));
}
Info query(int x,int y){
return query(0,n-1,1,x,y);
}
template<class F>
int findfirst(int l,int r,int i,int x,int y,const F &f){
if(y<l||r<x||!f(t[i]))return n;
if(l==r)return l;
int m=(l+r)/2;
push(i);
int res=findfirst(l,m,i*2,x,y,f);
if(res==n)res=findfirst(m+1,r,i*2+1,x,y,f);
return res;
}
template<class F>
int findfirst(int x,int y,const F &f){
return findfirst(0,n-1,1,x,y,f);
}
template<class F>
int findlast(int l,int r,int i,int x,int y,const F &f){
if(y<l||r<x||!f(t[i]))return -1;
if(l==r)return l;
int m=(l+r)/2;
push(i);
int res=findlast(m+1,r,i*2+1,x,y,f);
if(res==-1)res=findlast(l,m,i*2,x,y,f);
return res;
}
template<class F>
int findlast(int x,int y,const F &f){
return findlast(0,n-1,1,x,y,f);
}
};
#line 2 "group/monoid/affine.hpp"
/**
* Author: Teetat T.
* Date: 2024-04-14
* Description: Affine Transfomation Monoid class.
*/
template<class T>
struct AffineMonoid{
using P = pair<T,T>;
using value_type = P;
static constexpr P op(const P &x,const P &y){
return P(x.first*y.first,x.second*y.first+y.second);
}
static constexpr P unit(){return P(T(1),T(0));}
static constexpr T eval(const P &f,const T &x){
return f.first*x+f.second;
}
};
#line 2 "group/monoid/add-count.hpp"
/**
* Author: Teetat T.
* Date: 2024-04-14
* Description: Add & Count Monoid class.
*/
template<class T>
struct AddCountMonoid{
using P = pair<T,int>;
using value_type = P;
static constexpr P op(const P &x,const P &y){
return P(x.first+y.first,x.second+y.second);
}
static constexpr P inverse(const P &x){return P(-x.first,-x.second);}
static constexpr P unit(){return P(T(0),0);}
static constexpr P make(const T &x){return P(x,1);}
};
#line 4 "group/monoid-action/add-count-affine.hpp"
/**
* Author: Teetat T.
* Date: 2024-04-14
* Description: Affine to Add & Count Action class.
*/
template<class T>
struct AddCountAffineAction{
using InfoMonoid = AddCountMonoid<T>;
using TagMonoid = AffineMonoid<T>;
using Info = typename InfoMonoid::value_type;
using Tag = typename TagMonoid::value_type;
static constexpr Info op(const Info &a,const Tag &b){
return Info(a.first*b.first+a.second*b.second,a.second);
}
};
#line 6 "verify/yosupo/data-structure/range_affine_range_sum.test.cpp"
using mint = mint998;
using Monoid = AddCountMonoid<mint>;
using Action = AddCountAffineAction<mint>;
using T = Monoid::value_type;
int main(){
cin.tie(nullptr)->sync_with_stdio(false);
int n,q;
cin >> n >> q;
vector<mint> a(n);
for(auto &x:a)cin >> x;
LazySegmentTree<Action> s(n,[&](int i){return Monoid::make(a[i]);});
while(q--){
int op;
cin >> op;
if(op){
int l,r;
cin >> l >> r;
cout << s.query(l,r-1).first << "\n";
}else{
int l,r,b,c;
cin >> l >> r >> b >> c;
s.update(l,r-1,T(b,c));
}
}
}