This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/dynamic_sequence_range_affine_range_sum"
#include "template.hpp"
#include "modular-arithmetic/montgomery-modint.hpp"
#include "data-structure/link-cut-tree/lazy-reversible-splay-tree.hpp"
#include "group/monoid-action/add-count-affine.hpp"
using mint = mint998;
using Action = AddCountAffineAction<mint>;
using Info = Action::Info;
using Tag = Action::Tag;
int main(){
cin.tie(nullptr)->sync_with_stdio(false);
int n,q;
cin >> n >> q;
vector<Info> a(n);
for(auto &[x,y]:a)cin >> x,y=1;
using Tree = LazyReversibleSplayTree<Action>;
using Node = Tree::Node;
using Ptr = Node*;
Tree s;
Ptr root=s.build(a);
while(q--){
int op;
cin >> op;
if(op==0){
int i;
mint x;
cin >> i >> x;
s.insert(root,i,new Node(Info(x,1)));
}else if(op==1){
int i;
cin >> i;
s.erase(root,i);
}else if(op==2){
int l,r;
cin >> l >> r;
s.reverse(root,l,r-1);
}else if(op==3){
int l,r;
mint b,c;
cin >> l >> r >> b >> c;
s.apply(root,l,r-1,Tag(b,c));
}else{
int l,r;
cin >> l >> r;
cout << s.query(root,l,r-1).first << "\n";
}
}
}
#line 1 "verify/yosupo/data-structure/dynamic_sequence_range_affine_range_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/dynamic_sequence_range_affine_range_sum"
#line 1 "template.hpp"
#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
using ll = long long;
using db = long double;
using vi = vector<int>;
using vl = vector<ll>;
using vd = vector<db>;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pdd = pair<db,db>;
const int INF=INT_MAX/2;
const int MOD=998244353;
const int MOD2=1000000007;
const ll LINF=LLONG_MAX/2;
const db DINF=numeric_limits<db>::infinity();
const db EPS=1e-9;
const db PI=acos(db(-1));
template<class T>
using ordered_set = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>;
template<class T>
using ordered_multiset = tree<T,null_type,less_equal<T>,rb_tree_tag,tree_order_statistics_node_update>;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
mt19937_64 rng64(chrono::steady_clock::now().time_since_epoch().count());
#line 2 "modular-arithmetic/montgomery-modint.hpp"
/**
* Author: Teetat T.
* Date: 2024-03-17
* Description: modular arithmetic operators using Montgomery space
*/
template<uint32_t mod,uint32_t root=0>
struct MontgomeryModInt{
using mint = MontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r(){
u32 res=1;
for(i32 i=0;i<5;i++)res*=2-mod*res;
return res;
}
static const u32 r=get_r();
static const u32 n2=-u64(mod)%mod;
static_assert(mod<(1<<30));
static_assert((mod&1)==1);
static_assert(r*mod==1);
u32 x;
constexpr MontgomeryModInt():x(0){}
constexpr MontgomeryModInt(const int64_t &v):x(reduce(u64(v%mod+mod)*n2)){}
static constexpr u32 get_mod(){return mod;}
static constexpr mint get_root(){return mint(root);}
explicit constexpr operator int64_t()const{return val();}
static constexpr u32 reduce(const u64 &v){
return (v+u64(u32(v)*u32(-r))*mod)>>32;
}
constexpr u32 val()const{
u32 res=reduce(x);
return res>=mod?res-mod:res;
}
constexpr mint inv()const{
int a=val(),b=mod,u=1,v=0,q=0;
while(b>0){
q=a/b;
a-=q*b;
u-=q*v;
swap(a,b);
swap(u,v);
}
return mint(u);
}
constexpr mint &operator+=(const mint &rhs){
if(i32(x+=rhs.x-2*mod)<0)x+=2*mod;
return *this;
}
constexpr mint &operator-=(const mint &rhs){
if(i32(x-=rhs.x)<0)x+=2*mod;
return *this;
}
constexpr mint &operator*=(const mint &rhs){
x=reduce(u64(x)*rhs.x);
return *this;
}
constexpr mint &operator/=(const mint &rhs){
return *this*=rhs.inv();
}
constexpr mint &operator++(){return *this+=mint(1);}
constexpr mint &operator--(){return *this-=mint(1);}
constexpr mint operator++(int){
mint res=*this;
return *this+=mint(1),res;
}
constexpr mint operator--(int){
mint res=*this;
return *this-=mint(1),res;
}
constexpr mint operator-()const{return mint()-mint(*this);};
constexpr mint operator+()const{return mint(*this);};
friend constexpr mint operator+(const mint &lhs,const mint &rhs){return mint(lhs)+=rhs;}
friend constexpr mint operator-(const mint &lhs,const mint &rhs){return mint(lhs)-=rhs;}
friend constexpr mint operator*(const mint &lhs,const mint &rhs){return mint(lhs)*=rhs;}
friend constexpr mint operator/(const mint &lhs,const mint &rhs){return mint(lhs)/=rhs;}
friend constexpr bool operator==(const mint &lhs,const mint &rhs){
return (lhs.x>=mod?lhs.x-mod:lhs.x)==(rhs.x>=mod?rhs.x-mod:rhs.x);
}
friend constexpr bool operator!=(const mint &lhs,const mint &rhs){
return (lhs.x>=mod?lhs.x-mod:lhs.x)!=(rhs.x>=mod?rhs.x-mod:rhs.x);
}
friend constexpr bool operator<(const mint &lhs,const mint &rhs){
return (lhs.x>=mod?lhs.x-mod:lhs.x)<(rhs.x>=mod?rhs.x-mod:rhs.x); // for std::map
}
friend istream &operator>>(istream &is,mint &o){
int64_t v;
is >> v;
o=mint(v);
return is;
}
friend ostream &operator<<(ostream &os,const mint &o){
return os << o.val();
}
};
using mint998 = MontgomeryModInt<998244353,3>;
using mint107 = MontgomeryModInt<1000000007>;
#line 2 "data-structure/link-cut-tree/splay-tree-base.hpp"
/**
* Author: Teetat T.
* Date: 2024-04-13
* Description: Splay Tree. splay(u) will make node u be the root of the tree in amortized O(log n) time.
*/
template<class Node>
struct SplayTreeBase{
using Ptr = Node*;
bool is_root(Ptr t){
return !(t->p)||(t->p->l!=t&&t->p->r!=t);
} // The parent of the root stores the path parant in link cut tree.
int size(Ptr t){
return t?t->size:0;
}
virtual void push(Ptr t){};
virtual void pull(Ptr t){};
int pos(Ptr t){
if(t->p){
if(t->p->l==t)return -1;
if(t->p->r==t)return 1;
}
return 0;
}
void rotate(Ptr t){
Ptr x=t->p,y=x->p;
if(pos(t)==-1){
if((x->l=t->r))t->r->p=x;
t->r=x,x->p=t;
}else{
if((x->r=t->l))t->l->p=x;
t->l=x,x->p=t;
}
pull(x),pull(t);
if((t->p=y)){
if(y->l==x)y->l=t;
if(y->r==x)y->r=t;
}
}
void splay(Ptr t){
if(!t)return;
push(t);
while(!is_root(t)){
Ptr x=t->p;
if(is_root(x)){
push(x),push(t);
rotate(t);
}else{
Ptr y=x->p;
push(y),push(x),push(t);
if(pos(x)==pos(t))rotate(x),rotate(t);
else rotate(t),rotate(t);
}
}
}
Ptr get_first(Ptr t){
while(t->l)push(t),t=t->l;
splay(t);
return t;
}
Ptr get_last(Ptr t){
while(t->r)push(t),t=t->r;
splay(t);
return t;
}
Ptr merge(Ptr l,Ptr r){
splay(l),splay(r);
if(!l)return r;
if(!r)return l;
l=get_last(l);
l->r=r;
r->p=l;
pull(l);
return l;
}
pair<Ptr,Ptr> split(Ptr t,int k){
if(!t)return {nullptr,nullptr};
if(k==0)return {nullptr,t};
if(k==size(t))return {t,nullptr};
push(t);
if(k<=size(t->l)){
auto x=split(t->l,k);
t->l=x.second;
t->p=nullptr;
if(x.second)x.second->p=t;
pull(t);
return {x.first,t};
}else{
auto x=split(t->r,k-size(t->l)-1);
t->r=x.first;
t->p=nullptr;
if(x.first)x.first->p=t;
pull(t);
return {t,x.second};
}
}
void insert(Ptr &t,int k,Ptr v){
splay(t);
auto x=split(t,k);
t=merge(merge(x.first,v),x.second);
}
void erase(Ptr &t,int k){
splay(t);
auto x=split(t,k);
auto y=split(x.second,1);
// delete y.first;
t=merge(x.first,y.second);
}
template<class T>
Ptr build(const vector<T> &v){
if(v.empty())return nullptr;
function<Ptr(int,int)> build=[&](int l,int r){
if(l==r)return new Node(v[l]);
int m=(l+r)/2;
return merge(build(l,m),build(m+1,r));
};
return build(0,v.size()-1);
}
};
#line 2 "data-structure/link-cut-tree/lazy-reversible-bbst.hpp"
/**
* Author: Teetat Info.
* Date: 2024-04-13
* Description: Lazy Reversible BBST Base.
*/
template<class Tree,class Node,class MonoidAction>
struct LazyReversibleBBST:Tree{
using Tree::merge;
using Tree::split;
using typename Tree::Ptr;
using InfoMonoid = typename MonoidAction::InfoMonoid;
using TagMonoid = typename MonoidAction::TagMonoid;
using Info = typename MonoidAction::Info;
using Tag = typename MonoidAction::Tag;
LazyReversibleBBST()=default;
Info sum(Ptr t){
return t?t->sum:InfoMonoid::unit();
}
void pull(Ptr t){
if(!t)return;
push(t);
t->size=1;
t->sum=t->val;
t->revsum=t->val;
if(t->l){
t->size+=t->l->size;
t->sum=InfoMonoid::op(t->l->sum,t->sum);
t->revsum=InfoMonoid::op(t->revsum,t->l->revsum);
}
if(t->r){
t->size+=t->r->size;
t->sum=InfoMonoid::op(t->sum,t->r->sum);
t->revsum=InfoMonoid::op(t->r->revsum,t->revsum);
}
}
void push(Ptr t){
if(!t)return;
if(t->rev){
toggle(t->l);
toggle(t->r);
t->rev=false;
}
if(t->lz!=TagMonoid::unit()){
propagate(t->l,t->lz);
propagate(t->r,t->lz);
t->lz=TagMonoid::unit();
}
}
void toggle(Ptr t){
if(!t)return;
swap(t->l,t->r);
swap(t->sum,t->revsum);
t->rev^=true;
}
void propagate(Ptr t,const Tag &v){
if(!t)return;
t->val=MonoidAction::op(t->val,v);
t->sum=MonoidAction::op(t->sum,v);
t->revsum=MonoidAction::op(t->revsum,v);
t->lz=TagMonoid::op(t->lz,v);
}
void apply(Ptr &t,int l,int r,const Tag &v){
if(l>r)return;
auto x=split(t,l);
auto y=split(x.second,r-l+1);
propagate(y.first,v);
t=merge(x.first,merge(y.first,y.second));
}
Info query(Ptr &t,int l,int r){
if(l>r)return InfoMonoid::unit();
auto x=split(t,l);
auto y=split(x.second,r-l+1);
Info res=sum(y.first);
t=merge(x.first,merge(y.first,y.second));
return res;
}
void reverse(Ptr &t,int l,int r){
if(l>r)return;
auto x=split(t,l);
auto y=split(x.second,r-l+1);
toggle(y.first);
t=merge(x.first,merge(y.first,y.second));
}
};
#line 4 "data-structure/link-cut-tree/lazy-reversible-splay-tree.hpp"
/**
* Author: Teetat T.
* Date: 2024-04-13
* Description: Lazy Reversible Splay Tree.
*/
template<class MonoidAction>
struct LazyReversibleSplayTreeNode{
using Ptr = LazyReversibleSplayTreeNode*;
using InfoMonoid = typename MonoidAction::InfoMonoid;
using TagMonoid = typename MonoidAction::TagMonoid;
using Info = typename MonoidAction::Info;
using Tag = typename MonoidAction::Tag;
using value_type = Info;
Ptr l,r,p;
Info val,sum,revsum;
Tag lz;
int size;
bool rev;
LazyReversibleSplayTreeNode(const Info &_val=InfoMonoid::unit(),const Tag &_lz=TagMonoid::unit())
:l(),r(),p(),val(_val),sum(_val),revsum(_val),lz(_lz),size(1),rev(false){}
};
template<class MonoidAction>
struct LazyReversibleSplayTree
: LazyReversibleBBST<SplayTreeBase<LazyReversibleSplayTreeNode<MonoidAction>>,
LazyReversibleSplayTreeNode<MonoidAction>,MonoidAction>{
using Node = LazyReversibleSplayTreeNode<MonoidAction>;
};
#line 2 "group/monoid/affine.hpp"
/**
* Author: Teetat T.
* Date: 2024-04-14
* Description: Affine Transfomation Monoid class.
*/
template<class T>
struct AffineMonoid{
using P = pair<T,T>;
using value_type = P;
static constexpr P op(const P &x,const P &y){
return P(x.first*y.first,x.second*y.first+y.second);
}
static constexpr P unit(){return P(T(1),T(0));}
static constexpr T eval(const P &f,const T &x){
return f.first*x+f.second;
}
};
#line 2 "group/monoid/add-count.hpp"
/**
* Author: Teetat T.
* Date: 2024-04-14
* Description: Add & Count Monoid class.
*/
template<class T>
struct AddCountMonoid{
using P = pair<T,int>;
using value_type = P;
static constexpr P op(const P &x,const P &y){
return P(x.first+y.first,x.second+y.second);
}
static constexpr P inverse(const P &x){return P(-x.first,-x.second);}
static constexpr P unit(){return P(T(0),0);}
static constexpr P make(const T &x){return P(x,1);}
};
#line 4 "group/monoid-action/add-count-affine.hpp"
/**
* Author: Teetat T.
* Date: 2024-04-14
* Description: Affine to Add & Count Action class.
*/
template<class T>
struct AddCountAffineAction{
using InfoMonoid = AddCountMonoid<T>;
using TagMonoid = AffineMonoid<T>;
using Info = typename InfoMonoid::value_type;
using Tag = typename TagMonoid::value_type;
static constexpr Info op(const Info &a,const Tag &b){
return Info(a.first*b.first+a.second*b.second,a.second);
}
};
#line 6 "verify/yosupo/data-structure/dynamic_sequence_range_affine_range_sum.test.cpp"
using mint = mint998;
using Action = AddCountAffineAction<mint>;
using Info = Action::Info;
using Tag = Action::Tag;
int main(){
cin.tie(nullptr)->sync_with_stdio(false);
int n,q;
cin >> n >> q;
vector<Info> a(n);
for(auto &[x,y]:a)cin >> x,y=1;
using Tree = LazyReversibleSplayTree<Action>;
using Node = Tree::Node;
using Ptr = Node*;
Tree s;
Ptr root=s.build(a);
while(q--){
int op;
cin >> op;
if(op==0){
int i;
mint x;
cin >> i >> x;
s.insert(root,i,new Node(Info(x,1)));
}else if(op==1){
int i;
cin >> i;
s.erase(root,i);
}else if(op==2){
int l,r;
cin >> l >> r;
s.reverse(root,l,r-1);
}else if(op==3){
int l,r;
mint b,c;
cin >> l >> r >> b >> c;
s.apply(root,l,r-1,Tag(b,c));
}else{
int l,r;
cin >> l >> r;
cout << s.query(root,l,r-1).first << "\n";
}
}
}