cp-library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ttamx/cp-library

:heavy_check_mark: verify/yosupo/convolution/min_plus_convolution_convex_arbitrary.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/min_plus_convolution_convex_arbitrary"
#include "template.hpp"
#include "convolution/max-plus-convolution.hpp"

int main(){
    cin.tie(nullptr)->sync_with_stdio(false);
    int n,m;
    cin >> n >> m;
    vector<int> a(n),b(m);
    for(auto &x:a){
        cin >> x;
        x*=-1;
    }
    for(auto &x:b){
        cin >> x;
        x*=-1;
    }
    auto c=max_plus_convolution_arbitary_convex(b,a);
    for(auto x:c){
        cout << -x << " ";
    }
}
#line 1 "verify/yosupo/convolution/min_plus_convolution_convex_arbitrary.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/min_plus_convolution_convex_arbitrary"
#line 1 "template.hpp"
#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

using ll = long long;
using db = long double;
using vi = vector<int>;
using vl = vector<ll>;
using vd = vector<db>;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pdd = pair<db,db>;
const int INF=INT_MAX/2;
const int MOD=998244353;
const int MOD2=1000000007;
const ll LINF=LLONG_MAX/2;
const db DINF=numeric_limits<db>::infinity();
const db EPS=1e-9;
const db PI=acos(db(-1));

template<class T>
using ordered_set = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>;
template<class T>
using ordered_multiset = tree<T,null_type,less_equal<T>,rb_tree_tag,tree_order_statistics_node_update>;

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
mt19937_64 rng64(chrono::steady_clock::now().time_since_epoch().count());
#line 2 "convolution/max-plus-convolution.hpp"

/**
 * Author: Teetat T.
 * Date: 2024-09-01
 * Description: Max Plus Convolution. Find $C[k] = max_{i+j=k}\{A[i] + B[j]\}$.
 * Time: $O(N)$.
 */

// SMAWCK algorithm for finding row-wise maxima.
// f(i,j,k) checks if M[i][j] <= M[i][k].
// f(i,j,k) checks if M[i][k] is at least as good as M[i][j].
// higher is better.
template<class F>
vector<int> smawck(const F &f,const vector<int> &rows,const vector<int> &cols){
    int n=(int)rows.size(),m=(int)cols.size();
    if(max(n,m)<=2){
        vector<int> ans(n,-1);
        for(int i=0;i<n;i++){
            for(int j:cols){
                if(ans[i]==-1||f(rows[i],ans[i],j)){
                    ans[i]=j;
                }
            }
        }
        return ans;
    }
    if(n<m){
        // reduce
        vector<int> st;
        for(int j:cols){
            while(true){
                if(st.empty()){
                    st.emplace_back(j);
                    break;
                }else if(f(rows[(int)st.size()-1],st.back(),j)){
                    st.pop_back();
                }else if(st.size()<n){
                    st.emplace_back(j);
                    break;
                }else{
                    break;
                }
            }
        }
        return smawck(f,rows,st);
    }   
    vector<int> ans(n,-1);
    vector<int> new_rows;
    for(int i=1;i<n;i+=2){
        new_rows.emplace_back(rows[i]);
    }
    auto res=smawck(f,new_rows,cols);
    for(int i=0;i<new_rows.size();i++){
        ans[2*i+1]=res[i];
    }
    for(int i=0,l=0,r=0;i<n;i+=2){
        if(i+1==n)r=m;
        while(r<m&&cols[r]<=ans[i+1])r++;
        ans[i]=cols[l++];
        for(;l<r;l++){
            if(f(rows[i],ans[i],cols[l])){
                ans[i]=cols[l];
            }
        }
        l--;
    }
    return ans;
}

template<class F>
vector<int> smawck(const F &f,int n,int m){
    vector<int> rows(n),cols(m);
    iota(rows.begin(),rows.end(),0);
    iota(cols.begin(),cols.end(),0);
    return smawck(f,rows,cols);
}

// Max Plus Convolution.
// b must be convex, i.e. b[i]-b[i-1]>=b[i+1]-b[i].
template<class T>
vector<T> max_plus_convolution_arbitary_convex(vector<T> a,const vector<T> &b){
    if(a.empty()||b.empty())return {};
    if((int)b.size()==1){
        for(auto &x:a)x+=b[0];
        return a;
    }
    int n=(int)a.size(),m=(int)b.size();
    auto f=[&](int i,int j){
        return a[j]+b[i-j];
    };
    auto cmp=[&](int i,int j,int k){
        if(i<k)return false;
        if(i-j>=m)return true;
        return f(i,j)<=f(i,k);
    };
    auto best=smawck(cmp,n+m-1,n);
    vector<T> ans(n+m-1);
    for(int i=0;i<n+m-1;i++){
        ans[i]=f(i,best[i]);
    }
    return ans;
}

#line 4 "verify/yosupo/convolution/min_plus_convolution_convex_arbitrary.test.cpp"

int main(){
    cin.tie(nullptr)->sync_with_stdio(false);
    int n,m;
    cin >> n >> m;
    vector<int> a(n),b(m);
    for(auto &x:a){
        cin >> x;
        x*=-1;
    }
    for(auto &x:b){
        cin >> x;
        x*=-1;
    }
    auto c=max_plus_convolution_arbitary_convex(b,a);
    for(auto x:c){
        cout << -x << " ";
    }
}
Back to top page