This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/bitwise_xor_convolution"
#include "template.hpp"
#include "modular-arithmetic/montgomery-modint.hpp"
#include "convolution/xor-convolution.hpp"
using mint = mint998;
int main(){
cin.tie(nullptr)->sync_with_stdio(false);
int n;
cin >> n;
n=1<<n;
vector<mint> a(n),b(n);
for(auto &x:a)cin >> x;
for(auto &x:b)cin >> x;
auto c=xor_convolution(a,b);
for(auto x:c)cout << x << " ";
}
#line 1 "verify/yosupo/convolution/bitwise_xor_convolution.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/bitwise_xor_convolution"
#line 1 "template.hpp"
#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
using ll = long long;
using db = long double;
using vi = vector<int>;
using vl = vector<ll>;
using vd = vector<db>;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pdd = pair<db,db>;
const int INF=INT_MAX/2;
const int MOD=998244353;
const int MOD2=1000000007;
const ll LINF=LLONG_MAX/2;
const db DINF=numeric_limits<db>::infinity();
const db EPS=1e-9;
const db PI=acos(db(-1));
template<class T>
using ordered_set = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>;
template<class T>
using ordered_multiset = tree<T,null_type,less_equal<T>,rb_tree_tag,tree_order_statistics_node_update>;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
mt19937_64 rng64(chrono::steady_clock::now().time_since_epoch().count());
#line 2 "modular-arithmetic/montgomery-modint.hpp"
/**
* Author: Teetat T.
* Date: 2024-03-17
* Description: modular arithmetic operators using Montgomery space
*/
template<uint32_t mod,uint32_t root=0>
struct MontgomeryModInt{
using mint = MontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r(){
u32 res=1;
for(i32 i=0;i<5;i++)res*=2-mod*res;
return res;
}
static const u32 r=get_r();
static const u32 n2=-u64(mod)%mod;
static_assert(mod<(1<<30));
static_assert((mod&1)==1);
static_assert(r*mod==1);
u32 x;
constexpr MontgomeryModInt():x(0){}
constexpr MontgomeryModInt(const int64_t &v):x(reduce(u64(v%mod+mod)*n2)){}
static constexpr u32 get_mod(){return mod;}
static constexpr mint get_root(){return mint(root);}
explicit constexpr operator int64_t()const{return val();}
static constexpr u32 reduce(const u64 &v){
return (v+u64(u32(v)*u32(-r))*mod)>>32;
}
constexpr u32 val()const{
u32 res=reduce(x);
return res>=mod?res-mod:res;
}
constexpr mint inv()const{
int a=val(),b=mod,u=1,v=0,q=0;
while(b>0){
q=a/b;
a-=q*b;
u-=q*v;
swap(a,b);
swap(u,v);
}
return mint(u);
}
constexpr mint &operator+=(const mint &rhs){
if(i32(x+=rhs.x-2*mod)<0)x+=2*mod;
return *this;
}
constexpr mint &operator-=(const mint &rhs){
if(i32(x-=rhs.x)<0)x+=2*mod;
return *this;
}
constexpr mint &operator*=(const mint &rhs){
x=reduce(u64(x)*rhs.x);
return *this;
}
constexpr mint &operator/=(const mint &rhs){
return *this*=rhs.inv();
}
constexpr mint &operator++(){return *this+=mint(1);}
constexpr mint &operator--(){return *this-=mint(1);}
constexpr mint operator++(int){
mint res=*this;
return *this+=mint(1),res;
}
constexpr mint operator--(int){
mint res=*this;
return *this-=mint(1),res;
}
constexpr mint operator-()const{return mint()-mint(*this);};
constexpr mint operator+()const{return mint(*this);};
friend constexpr mint operator+(const mint &lhs,const mint &rhs){return mint(lhs)+=rhs;}
friend constexpr mint operator-(const mint &lhs,const mint &rhs){return mint(lhs)-=rhs;}
friend constexpr mint operator*(const mint &lhs,const mint &rhs){return mint(lhs)*=rhs;}
friend constexpr mint operator/(const mint &lhs,const mint &rhs){return mint(lhs)/=rhs;}
friend constexpr bool operator==(const mint &lhs,const mint &rhs){
return (lhs.x>=mod?lhs.x-mod:lhs.x)==(rhs.x>=mod?rhs.x-mod:rhs.x);
}
friend constexpr bool operator!=(const mint &lhs,const mint &rhs){
return (lhs.x>=mod?lhs.x-mod:lhs.x)!=(rhs.x>=mod?rhs.x-mod:rhs.x);
}
friend constexpr bool operator<(const mint &lhs,const mint &rhs){
return (lhs.x>=mod?lhs.x-mod:lhs.x)<(rhs.x>=mod?rhs.x-mod:rhs.x); // for std::map
}
friend istream &operator>>(istream &is,mint &o){
int64_t v;
is >> v;
o=mint(v);
return is;
}
friend ostream &operator<<(ostream &os,const mint &o){
return os << o.val();
}
};
using mint998 = MontgomeryModInt<998244353,3>;
using mint107 = MontgomeryModInt<1000000007>;
#line 2 "convolution/xor-convolution.hpp"
/**
* Author: Teetat T.
* Date: 2024-07-29
* Description: Bitwise XOR Convolution.
* Fast Walsh-Hadamard Transform: $A^\prime[S]=\sum_T(-1)^{|S\&T|}A[T]$.
* Time: $O(N\log N)$.
*/
template<class T>
void fwht(vector<T> &a){
int n=(int)a.size();
assert(n==(n&-n));
for(int i=1;i<n;i<<=1){
for(int j=0;j<n;j++){
if(j&i){
T &u=a[j^i],&v=a[j];
tie(u,v)=make_pair(u+v,u-v);
}
}
}
}
template<class T>
vector<T> xor_convolution(vector<T> a,vector<T> b){
int n=(int)a.size();
fwht(a);
fwht(b);
for(int i=0;i<n;i++)a[i]*=b[i];
fwht(a);
T div=T(1)/T(n);
if(div==T(0)){
for(auto &x:a)x/=n;
}else{
for(auto &x:a)x*=div;
}
return a;
}
#line 5 "verify/yosupo/convolution/bitwise_xor_convolution.test.cpp"
using mint = mint998;
int main(){
cin.tie(nullptr)->sync_with_stdio(false);
int n;
cin >> n;
n=1<<n;
vector<mint> a(n),b(n);
for(auto &x:a)cin >> x;
for(auto &x:b)cin >> x;
auto c=xor_convolution(a,b);
for(auto x:c)cout << x << " ";
}