This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ttamx/cp-library
#define PROBLEM "https://judge.yosupo.jp/problem/bitwise_and_convolution" #include "template.hpp" #include "modular-arithmetic/montgomery-modint.hpp" #include "convolution/or-convolution.hpp" using mint = mint998; int main(){ cin.tie(nullptr)->sync_with_stdio(false); int n; cin >> n; n=1<<n; vector<mint> a(n),b(n); for(auto &x:a)cin >> x; for(auto &x:b)cin >> x; reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); auto c=or_convolution(a,b); reverse(c.begin(),c.end()); for(auto x:c)cout << x << " "; }
#line 1 "verify/yosupo/convolution/bitwise_or_convolution.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/bitwise_and_convolution" #line 1 "template.hpp" #include<bits/stdc++.h> #include<ext/pb_ds/assoc_container.hpp> #include<ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; using ll = long long; using db = long double; using vi = vector<int>; using vl = vector<ll>; using vd = vector<db>; using pii = pair<int,int>; using pll = pair<ll,ll>; using pdd = pair<db,db>; const int INF=INT_MAX/2; const int MOD=998244353; const int MOD2=1000000007; const ll LINF=LLONG_MAX/2; const db DINF=numeric_limits<db>::infinity(); const db EPS=1e-9; const db PI=acos(db(-1)); template<class T> using ordered_set = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>; template<class T> using ordered_multiset = tree<T,null_type,less_equal<T>,rb_tree_tag,tree_order_statistics_node_update>; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); mt19937_64 rng64(chrono::steady_clock::now().time_since_epoch().count()); #line 2 "modular-arithmetic/montgomery-modint.hpp" /** * Author: Teetat T. * Date: 2024-03-17 * Description: modular arithmetic operators using Montgomery space */ template<uint32_t mod,uint32_t root=0> struct MontgomeryModInt{ using mint = MontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r(){ u32 res=1; for(i32 i=0;i<5;i++)res*=2-mod*res; return res; } static const u32 r=get_r(); static const u32 n2=-u64(mod)%mod; static_assert(mod<(1<<30)); static_assert((mod&1)==1); static_assert(r*mod==1); u32 x; constexpr MontgomeryModInt():x(0){} constexpr MontgomeryModInt(const int64_t &v):x(reduce(u64(v%mod+mod)*n2)){} static constexpr u32 get_mod(){return mod;} static constexpr mint get_root(){return mint(root);} explicit constexpr operator int64_t()const{return val();} static constexpr u32 reduce(const u64 &v){ return (v+u64(u32(v)*u32(-r))*mod)>>32; } constexpr u32 val()const{ u32 res=reduce(x); return res>=mod?res-mod:res; } constexpr mint inv()const{ int a=val(),b=mod,u=1,v=0,q=0; while(b>0){ q=a/b; a-=q*b; u-=q*v; swap(a,b); swap(u,v); } return mint(u); } constexpr mint &operator+=(const mint &rhs){ if(i32(x+=rhs.x-2*mod)<0)x+=2*mod; return *this; } constexpr mint &operator-=(const mint &rhs){ if(i32(x-=rhs.x)<0)x+=2*mod; return *this; } constexpr mint &operator*=(const mint &rhs){ x=reduce(u64(x)*rhs.x); return *this; } constexpr mint &operator/=(const mint &rhs){ return *this*=rhs.inv(); } constexpr mint &operator++(){return *this+=mint(1);} constexpr mint &operator--(){return *this-=mint(1);} constexpr mint operator++(int){ mint res=*this; return *this+=mint(1),res; } constexpr mint operator--(int){ mint res=*this; return *this-=mint(1),res; } constexpr mint operator-()const{return mint()-mint(*this);}; constexpr mint operator+()const{return mint(*this);}; friend constexpr mint operator+(const mint &lhs,const mint &rhs){return mint(lhs)+=rhs;} friend constexpr mint operator-(const mint &lhs,const mint &rhs){return mint(lhs)-=rhs;} friend constexpr mint operator*(const mint &lhs,const mint &rhs){return mint(lhs)*=rhs;} friend constexpr mint operator/(const mint &lhs,const mint &rhs){return mint(lhs)/=rhs;} friend constexpr bool operator==(const mint &lhs,const mint &rhs){ return (lhs.x>=mod?lhs.x-mod:lhs.x)==(rhs.x>=mod?rhs.x-mod:rhs.x); } friend constexpr bool operator!=(const mint &lhs,const mint &rhs){ return (lhs.x>=mod?lhs.x-mod:lhs.x)!=(rhs.x>=mod?rhs.x-mod:rhs.x); } friend constexpr bool operator<(const mint &lhs,const mint &rhs){ return (lhs.x>=mod?lhs.x-mod:lhs.x)<(rhs.x>=mod?rhs.x-mod:rhs.x); // for std::map } friend istream &operator>>(istream &is,mint &o){ int64_t v; is >> v; o=mint(v); return is; } friend ostream &operator<<(ostream &os,const mint &o){ return os << o.val(); } }; using mint998 = MontgomeryModInt<998244353,3>; using mint107 = MontgomeryModInt<1000000007>; #line 2 "convolution/or-convolution.hpp" /** * Author: Teetat T. * Date: 2024-07-29 * Description: Bitwise OR Convolution. * Subset Zeta Transform: $A^\prime[S]=\sum_{T\subseteq S}A[T]$. * Subset Mobius Transform: $A[T]=\sum_{S\subseteq T}(-1)^{|T-S|}A^\prime[S]$. * Time: $O(N\log N)$. */ template<class T> void subset_zeta(vector<T> &a){ int n=(int)a.size(); assert(n==(n&-n)); for(int i=1;i<n;i<<=1){ for(int j=0;j<n;j++){ if(j&i){ a[j]+=a[j^i]; } } } } template<class T> void subset_mobius(vector<T> &a){ int n=(int)a.size(); assert(n==(n&-n)); for(int i=n;i>>=1;){ for(int j=0;j<n;j++){ if(j&i){ a[j]-=a[j^i]; } } } } template<class T> vector<T> or_convolution(vector<T> a,vector<T> b){ subset_zeta(a); subset_zeta(b); for(int i=0;i<(int)a.size();i++)a[i]*=b[i]; subset_mobius(a); return a; } #line 5 "verify/yosupo/convolution/bitwise_or_convolution.test.cpp" using mint = mint998; int main(){ cin.tie(nullptr)->sync_with_stdio(false); int n; cin >> n; n=1<<n; vector<mint> a(n),b(n); for(auto &x:a)cin >> x; for(auto &x:b)cin >> x; reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); auto c=or_convolution(a,b); reverse(c.begin(),c.end()); for(auto x:c)cout << x << " "; }