This documentation is automatically generated by online-judge-tools/verification-helper
#include "flow/dinic.hpp"
#pragma once
/**
* Author: Teetat T.
* Date: 2024-07-15
* Description: Dinic's Algorithm for finding the maximum flow.
* Time: O(V E \log U) where U is the maximum flow.
*/
template<class T,bool directed=true,bool scaling=true>
struct Dinic{
static constexpr T INF=numeric_limits<T>::max()/2;
struct Edge{
int to;
T flow,cap;
Edge(int _to,T _cap):to(_to),flow(0),cap(_cap){}
T remain(){return cap-flow;}
};
int n,s,t;
T U;
vector<Edge> e;
vector<vector<int>> g;
vector<int> ptr,lv;
bool calculated;
T max_flow;
Dinic(){}
Dinic(int n,int s,int t){init(n,s,t);}
void init(int _n,int _s,int _t){
n=_n,s=_s,t=_t;
U=0;
e.clear();
g.assign(n,{});
calculated=false;
}
void add_edge(int from,int to,T cap){
assert(0<=from&&from<n&&0<=to&&to<n);
g[from].emplace_back(e.size());
e.emplace_back(to,cap);
g[to].emplace_back(e.size());
e.emplace_back(from,directed?0:cap);
U=max(U,cap);
}
bool bfs(T scale){
lv.assign(n,-1);
vector<int> q{s};
lv[s]=0;
for(int i=0;i<(int)q.size();i++){
int u=q[i];
for(int j:g[u]){
int v=e[j].to;
if(lv[v]==-1&&e[j].remain()>=scale){
q.emplace_back(v);
lv[v]=lv[u]+1;
}
}
}
return lv[t]!=-1;
}
T dfs(int u,int t,T f){
if(u==t||f==0)return f;
for(int &i=ptr[u];i<(int)g[u].size();i++){
int j=g[u][i];
int v=e[j].to;
if(lv[v]==lv[u]+1){
T res=dfs(v,t,min(f,e[j].remain()));
if(res>0){
e[j].flow+=res;
e[j^1].flow-=res;
return res;
}
}
}
return 0;
}
T flow(){
if(calculated)return max_flow;
calculated=true;
max_flow=0;
for(T scale=scaling?1LL<<(63-__builtin_clzll(U)):1LL;scale>0;scale>>=1){
while(bfs(scale)){
ptr.assign(n,0);
while(true){
T f=dfs(s,t,INF);
if(f==0)break;
max_flow+=f;
}
}
}
return max_flow;
}
pair<T,vector<int>> cut(){
flow();
vector<int> res(n);
for(int i=0;i<n;i++)res[i]=(lv[i]==-1);
return {max_flow,res};
}
};
#line 2 "flow/dinic.hpp"
/**
* Author: Teetat T.
* Date: 2024-07-15
* Description: Dinic's Algorithm for finding the maximum flow.
* Time: O(V E \log U) where U is the maximum flow.
*/
template<class T,bool directed=true,bool scaling=true>
struct Dinic{
static constexpr T INF=numeric_limits<T>::max()/2;
struct Edge{
int to;
T flow,cap;
Edge(int _to,T _cap):to(_to),flow(0),cap(_cap){}
T remain(){return cap-flow;}
};
int n,s,t;
T U;
vector<Edge> e;
vector<vector<int>> g;
vector<int> ptr,lv;
bool calculated;
T max_flow;
Dinic(){}
Dinic(int n,int s,int t){init(n,s,t);}
void init(int _n,int _s,int _t){
n=_n,s=_s,t=_t;
U=0;
e.clear();
g.assign(n,{});
calculated=false;
}
void add_edge(int from,int to,T cap){
assert(0<=from&&from<n&&0<=to&&to<n);
g[from].emplace_back(e.size());
e.emplace_back(to,cap);
g[to].emplace_back(e.size());
e.emplace_back(from,directed?0:cap);
U=max(U,cap);
}
bool bfs(T scale){
lv.assign(n,-1);
vector<int> q{s};
lv[s]=0;
for(int i=0;i<(int)q.size();i++){
int u=q[i];
for(int j:g[u]){
int v=e[j].to;
if(lv[v]==-1&&e[j].remain()>=scale){
q.emplace_back(v);
lv[v]=lv[u]+1;
}
}
}
return lv[t]!=-1;
}
T dfs(int u,int t,T f){
if(u==t||f==0)return f;
for(int &i=ptr[u];i<(int)g[u].size();i++){
int j=g[u][i];
int v=e[j].to;
if(lv[v]==lv[u]+1){
T res=dfs(v,t,min(f,e[j].remain()));
if(res>0){
e[j].flow+=res;
e[j^1].flow-=res;
return res;
}
}
}
return 0;
}
T flow(){
if(calculated)return max_flow;
calculated=true;
max_flow=0;
for(T scale=scaling?1LL<<(63-__builtin_clzll(U)):1LL;scale>0;scale>>=1){
while(bfs(scale)){
ptr.assign(n,0);
while(true){
T f=dfs(s,t,INF);
if(f==0)break;
max_flow+=f;
}
}
}
return max_flow;
}
pair<T,vector<int>> cut(){
flow();
vector<int> res(n);
for(int i=0;i<n;i++)res[i]=(lv[i]==-1);
return {max_flow,res};
}
};