This documentation is automatically generated by online-judge-tools/verification-helper
#include "convolution/lcm-convolution.hpp"
#pragma once
/**
* Author: Teetat T.
* Date: 2024-07-29
* Description: LCM Convolution.
* Divisor Zeta Transform: $A^\prime[n]=\sum_{d|n}A[d]$.
* Divisor Mobius Transform: $A[n]=\sum_{d|n}\mu(n/d)A^\prime[d]$.
* Time: $O(N\log\log N)$.
*/
template<class T>
void divisor_zeta(vector<T> &a){
int n=(int)a.size();
vector<bool> is_prime(n,true);
for(int p=2;p<n;p++){
if(!is_prime[p])continue;
for(int i=1;i*p<n;i++){
is_prime[i*p]=false;
a[i*p]+=a[i];
}
}
}
template<class T>
void divisor_mobius(vector<T> &a){
int n=(int)a.size();
vector<bool> is_prime(n,true);
for(int p=2;p<n;p++){
if(!is_prime[p])continue;
for(int i=(n-1)/p;i>=1;i--){
is_prime[i*p]=false;
a[i*p]-=a[i];
}
}
}
template<class T>
vector<T> lcm_convolution(vector<T> a,vector<T> b){
divisor_zeta(a);
divisor_zeta(b);
for(int i=0;i<(int)a.size();i++)a[i]*=b[i];
divisor_mobius(a);
return a;
}
#line 2 "convolution/lcm-convolution.hpp"
/**
* Author: Teetat T.
* Date: 2024-07-29
* Description: LCM Convolution.
* Divisor Zeta Transform: $A^\prime[n]=\sum_{d|n}A[d]$.
* Divisor Mobius Transform: $A[n]=\sum_{d|n}\mu(n/d)A^\prime[d]$.
* Time: $O(N\log\log N)$.
*/
template<class T>
void divisor_zeta(vector<T> &a){
int n=(int)a.size();
vector<bool> is_prime(n,true);
for(int p=2;p<n;p++){
if(!is_prime[p])continue;
for(int i=1;i*p<n;i++){
is_prime[i*p]=false;
a[i*p]+=a[i];
}
}
}
template<class T>
void divisor_mobius(vector<T> &a){
int n=(int)a.size();
vector<bool> is_prime(n,true);
for(int p=2;p<n;p++){
if(!is_prime[p])continue;
for(int i=(n-1)/p;i>=1;i--){
is_prime[i*p]=false;
a[i*p]-=a[i];
}
}
}
template<class T>
vector<T> lcm_convolution(vector<T> a,vector<T> b){
divisor_zeta(a);
divisor_zeta(b);
for(int i=0;i<(int)a.size();i++)a[i]*=b[i];
divisor_mobius(a);
return a;
}